Anodizing vs. Hard Anodizing: The Differences in Surface Treatment Techniques
2 min
In modern CNC machining, surface treatment techniques are indispensable for elevating the performance and longevity of metal components. Among these, anodizing and hard anodizing stand out as common methods, each offering unique processing advantages and distinct product characteristics.
What is Anodizing
Anodizing is an electrochemical process that increases the corrosion resistance and wear resistance of a metal surface by forming an oxide layer. This process is commonly performed on metals such as aluminum and magnesium. During anodizing, the metal component serves as the anode and is placed in an electrolytic solution, where an electric current is applied to induce oxidation reactions, resulting in the formation of a dense oxide layer.
The oxide layer formed through anodizing is typically thin, with relatively low density. The hardness of the oxide layer generally ranges from 150 to 300HV, offering moderate wear resistance. While anodizing provides a degree of protection and decorative effects, its performance may not suffice for applications requiring higher demands on metal surface properties.
What is Hard Anodizing:
Hard anodizing is an enhanced form of anodizing that strengthens the oxide layer's hardness, density, and wear resistance by incorporating special processing steps and additives. These additional steps and additives result in a thicker, harder, and more durable oxide layer.
Compared to regular anodizing, hard anodizing yields an oxide layer with significantly higher hardness and density. The hardness of the oxide layer typically exceeds 400HV, reaching even 1000HV or higher. This elevated hardness imparts outstanding wear resistance and corrosion resistance to the metal surface, making hard anodizing suitable for more demanding industrial environments.
Application Areas:
While anodizing is suitable for general metal surface treatments such as protection and decoration, hard anodizing finds greater utility in industries with higher demands on metal surface properties, including aerospace, automotive, and mechanical manufacturing sectors. It is particularly effective for components requiring superior wear and corrosion resistance.
Conclusion:
In conclusion, anodizing and hard anodizing represent two distinct metal surface treatment methods, differing primarily in processing techniques and final product characteristics. Hard anodizing, through improved processing techniques and oxide layer properties, enhances the hardness and wear resistance of metal surfaces, thereby expanding its applicability in industrial settings. Choosing the appropriate surface treatment method is essential for ensuring the durability and reliability of metal components in various working environments.
Popular Articles
• How to choose between Laser marking and Silkscreen?
• Anodizing vs. Hard Anodizing: The Differences in Surface Treatment Techniques
• What is Bead Blasting Finish in CNC? A Complete Guide
• Surface Finish in Machining, Types, Charts & Testing
• Explanation of different material surface treatment technologies in CNC machining
Keep Learning
EMI/RFI Shielding for CNC Machined Parts: Methods, Materials & Conductive Surface Finishes
EMI/RFI shielding in CNC-machined parts refers to the use of conductive materials, surface finishes, and enclosure design to block, absorb, or redirect electromagnetic interference, ensuring stable performance of sensitive electronic systems. Unlike sheet metal or molded plastic housings, CNC-machined components require tailored shielding solutions due to tighter tolerances, complex geometries, and precision grounding requirements. Electronic systems are becoming increasingly compact, faster, and more......
What Is Deburring? The Ultimate Guide to Deburring Tools & Deburring Machines
A machined part may look complete, but sharp edges and raised material often remain after cutting. These defects are called burrs. Deburring is the manufacturing process used to remove them and bring a part to its final, usable condition. Burrs might seem small, but they can cause big headaches. Metal parts before and after deburring on an industrial conveyor belt finishing machine Deburring is the manufacturing finishing process of removing burrs—unwanted sharp edges or raised material—from machined ......
How to choose between Laser marking and Silkscreen?
Choosing between laser marking and silkscreen printing for CNC machining service depends on various factors, including the specific requirements of your project. Here are some considerations to help you make an informed decision: (Left: Laser Marking/Right:Silkscreen) Material Compatibility: Laser Marking: Works well on a wide range of materials, including metals, plastics, ceramics, and more. It provides high precision and is suitable for detailed markings. Silkscreen Printing: Suitable for flat or s......
What is Bead Blasting Finish in CNC? A Complete Guide
When you think about CNC machining, precision and accuracy usually steal the spotlight. But surface finish is just as important. It's what the customer actually sees and feels, and in many cases, it's what determines whether a part looks “shop-made” or truly professional. A rough, uneven surface can undermine all the engineering effort that went into a design. If you’d like a deeper dive into all the options, check out our guide on surface finishes in CNC where we break down the pros and cons of each ......
CNC Machining Surface Roughness: A Practical Guide
Why Surface Roughness Matters in CNC Machining When we talk about CNC machining, precision isn't just about hitting the right dimensions, it’s also about how the surface feels and performs. Surface roughness describes the fine irregularities left on a machined surface, and it directly impacts how a part behaves in the real world. So, what is surface roughness? In simple terms, it's the measure of tiny peaks and valleys created by the cutting process. While they might look smooth to the naked eye, thes......
Surface Finish in Machining, Types, Charts & Testing
What is Surface Finish in Machining? At its core, surface finish in machining refers to the small-scale irregularities left on the surface of a part after machining. These irregularities are typically grouped into three categories: Roughness: The fine, closely spaced deviations caused by the cutting process itself. Roughness depends heavily on feed rate, tool sharpness, and cutting speed. Waviness: Larger, more widely spaced variations caused by machine tool vibration, deflection, or thermal distortio......