Anodizing vs. Hard Anodizing: The Differences in Surface Treatment Techniques
2 min
In modern CNC machining, surface treatment techniques are indispensable for elevating the performance and longevity of metal components. Among these, anodizing and hard anodizing stand out as common methods, each offering unique processing advantages and distinct product characteristics.
What is Anodizing
Anodizing is an electrochemical process that increases the corrosion resistance and wear resistance of a metal surface by forming an oxide layer. This process is commonly performed on metals such as aluminum and magnesium. During anodizing, the metal component serves as the anode and is placed in an electrolytic solution, where an electric current is applied to induce oxidation reactions, resulting in the formation of a dense oxide layer.
The oxide layer formed through anodizing is typically thin, with relatively low density. The hardness of the oxide layer generally ranges from 150 to 300HV, offering moderate wear resistance. While anodizing provides a degree of protection and decorative effects, its performance may not suffice for applications requiring higher demands on metal surface properties.
What is Hard Anodizing:
Hard anodizing is an enhanced form of anodizing that strengthens the oxide layer's hardness, density, and wear resistance by incorporating special processing steps and additives. These additional steps and additives result in a thicker, harder, and more durable oxide layer.
Compared to regular anodizing, hard anodizing yields an oxide layer with significantly higher hardness and density. The hardness of the oxide layer typically exceeds 400HV, reaching even 1000HV or higher. This elevated hardness imparts outstanding wear resistance and corrosion resistance to the metal surface, making hard anodizing suitable for more demanding industrial environments.
Application Areas:
While anodizing is suitable for general metal surface treatments such as protection and decoration, hard anodizing finds greater utility in industries with higher demands on metal surface properties, including aerospace, automotive, and mechanical manufacturing sectors. It is particularly effective for components requiring superior wear and corrosion resistance.
Conclusion:
In conclusion, anodizing and hard anodizing represent two distinct metal surface treatment methods, differing primarily in processing techniques and final product characteristics. Hard anodizing, through improved processing techniques and oxide layer properties, enhances the hardness and wear resistance of metal surfaces, thereby expanding its applicability in industrial settings. Choosing the appropriate surface treatment method is essential for ensuring the durability and reliability of metal components in various working environments.
Popular Articles
• How to choose between Laser marking and UV printing?
• Anodizing vs. Hard Anodizing: The Differences in Surface Treatment Techniques
• What is Bead Blasting Finish in CNC? A Complete Guide
• Surface Finish in Machining, Types, Charts & Testing
• Explanation of different material surface treatment technologies in CNC machining
Keep Learning
Optimizing Manufacturing Efficiency: A Guide to Computerized Numerical Control (CNC) Machining Surface Finishes
Why we Need Surface Finishing in CNC Machining When it comes to CNC machining, surface finishing plays an essential role in boosting corrosion resistance, promoting cleanliness and hygiene, boosting productivity, preserving quality control, and improving appearance. It assists in converting rough machined parts into polished, useful, and aesthetically pleasing parts that satisfy the required standards and client expectations. To be specific, surface finish has a big impact on a product's aesthetic app......
How to choose between Laser marking and UV printing?
Choosing between laser marking and UV printing for CNC machining service depends on various factors, including the specific requirements of your project. Here are some considerations to help you make an informed decision: (Left: Laser Marking/Right:UV Printing) Material Compatibility: Laser Marking: Works well on a wide range of materials, including metals, plastics, ceramics, and more. It provides high precision and is suitable for detailed markings. UV Printing: Works well on a wide range of materia......
Acrylic Polishing Guide: How to Achieve a Clear, Smooth Acrylic Finish
Technician inspecting a clear acrylic sheet under factory lights to check surface polish quality. Acrylic polishing is a critical surface finishing process used to improve the clarity, appearance, and performance of CNC machined acrylic (PMMA) parts. From simple hand polishing to machine polishing and industrial CNC acrylic polishing, different methods produce very different surface finishes, consistency levels, and risks such as heat buildup and acrylic cracking. This guide explains what acrylic poli......
EMI/RFI Shielding for CNC Machined Parts: Methods, Materials & Conductive Surface Finishes
EMI/RFI shielding in CNC-machined parts refers to the use of conductive materials, surface finishes, and enclosure design to block, absorb, or redirect electromagnetic interference, ensuring stable performance of sensitive electronic systems. Unlike sheet metal or molded plastic housings, CNC-machined components require tailored shielding solutions due to tighter tolerances, complex geometries, and precision grounding requirements. Electronic systems are becoming increasingly compact, faster, and more......
What Is Deburring? The Ultimate Guide to Deburring Tools & Deburring Machines
A machined part may look complete, but sharp edges and raised material often remain after cutting. These defects are called burrs. Deburring is the manufacturing process used to remove them and bring a part to its final, usable condition. Burrs might seem small, but they can cause big headaches. Metal parts before and after deburring on an industrial conveyor belt finishing machine Deburring is the manufacturing finishing process of removing burrs—unwanted sharp edges or raised material—from machined ......
What is Bead Blasting Finish in CNC? A Complete Guide
When you think about CNC machining, precision and accuracy usually steal the spotlight. But surface finish is just as important. It's what the customer actually sees and feels, and in many cases, it's what determines whether a part looks “shop-made” or truly professional. A rough, uneven surface can undermine all the engineering effort that went into a design. If you’d like a deeper dive into all the options, check out our guide on surface finishes in CNC where we break down the pros and cons of each ......