The Advantages of Laser Cutting vs. CNC Milling for Sheet Metal Fabrication
The Advantages of Laser Cutting vs. CNC Milling for Sheet Metal Fabrication
In the field of sheet metal processing, laser cutting and CNC milling are two core processes known for their high precision, high efficiency and ability to process complex structures. Whether it's aerospace parts or consumer electronics housings, choosing the right processing technology has a direct impact on cost, efficiency and product quality. This article will be an in-depth comparison of laser cutting and CNC milling process advantages, analysis of its application scenarios, and provide companies with technology selection of the practical guide.
I. Laser cutting: the perfect balance of speed and precision
1. Core process advantages
Ultra-high precision: fibre laser cutting machine can achieve ±0.05mm tolerance (such as TruLaser 5030), smooth and burr-free cut.
Wide material adaptability: support for stainless steel (0.5-30mm), aluminium alloy (0.5-25mm), copper plate (0.5-15mm) and so on.
Processing efficiency: cutting speed up to 40m/min (1mm carbon steel), 3 times faster than traditional plasma cutting.
2. Typical application scenarios
Thin plate precision processing:
Electronic equipment shell (thickness 0.5-3mm), contour accuracy ≤ ± 0.1mm.
Automotive sheet metal parts (such as door liners), cutting efficiency of 200 pieces / hour.
Complex graphics processing:
Artistic decorative metal screens, minimum hole diameter up to 0.2mm.
3. Cost-effectiveness analysis
Case: a home appliance company processing 10,000 pieces of stainless steel panels:
Laser cutting: single piece cost $ 8.5, time-consuming 3 days.
Traditional stamping: mould cost $ 50,000 + single piece cost $ 6.2, the total cost is higher.
II. CNC Milling: the ultimate solution for complex structures and high surface quality.
1. Core process advantages
Three-dimensional machining capacity: five-axis CNC milling machine can process deep cavities, curved surfaces, shaped structures (such as impellers, mould cavities).
Surface quality control: surface roughness Ra≤0.8μm after fine milling, directly achieve mirror effect.
Batch consistency: Dimensional fluctuation of processing 1000 pieces of aluminium ≤ ± 0.02mm (CPK ≥ 1.67).
2. Typical application scenarios
Thick plate precision parts:
Aircraft engine bracket (50mm aluminium alloy), flatness ≤ 0.03mm.
Hydraulic valve block (40CrMo steel), multi-hole system positional degree tolerance ± 0.01mm.
Functional surface treatment:
Mould insert nibble processing (VDI 3400 standard), texture depth 0.05-0.2mm.
3. Cost-effectiveness analysis
Case: a medical device company processing titanium alloy joint implants:
CNC milling: single piece cost $ 220, yield rate of 98%.
3D printing: single piece cost $ 380, need to follow up machining correction.
III. Laser cutting vs CNC milling: four dimensions of comparison and selection guide
Comparison Dimension | Laser Cutting | CNC Milling |
Applicable thickness | Thin plate (0.5-25mm) | Thick plate (5-300mm) |
Machining accuracy | ±0.05mm (2D contour) | ±0.01mm (3D structure) |
Material utilisation | Nested nesting saves 15-30% of material. | Clamping allowance needs to be reserved, lower utilisation rate |
Processing cycle | Fast (no tool change, continuous cutting) | Slow (multi-process tool change, suitable for complex parts) |
IV. How to choose the best machining process?
1. Selection decision tree
Demand priority for ‘speed + cost’ → choose laser cutting.
Demand priority is ‘complex structure + surface quality’ → choose CNC milling.
Mixed demand: laser cutting + CNC milling finishing (20% lower overall cost).
2. Industry Matching Table
Industries | Recommended Processes | Typical Cases |
Consumer Electronics | Laser Cutting | Mobile phone centre frames (stainless steel 0.8mm) |
Automotive Manufacturing | Laser cutting + CNC milling | Transmission Housing (Aluminium Die Casting) |
Aerospace | CNC Milling | Titanium wing ribs (5-axis machining) |
V. JLCCNC: One-Stop Service Expert for Sheet Metal Processing
JLCCNC integrates laser cutting and CNC milling technologies to provide high-precision and high-efficiency metal processing solutions for customers worldwide:
Technical Advantage:
Process co-innovation: laser cutting down (accuracy ±0.05mm) + CNC milling finishing (Ra 0.4μm), comprehensive efficiency increased by 35%.
Full material coverage: stainless steel, aluminium alloy, titanium alloy, etc.
Service highlights:
Fast response: 24-hour online quotation, 72-hour delivery of first sample.
Transparent cost: no hidden cost per piece, support small batch trial production.
Global delivery: as fast as 3 days to the world.
Contact JLCCNC today to unlock the endless possibilities of sheet metal processing!
Recent Posts
• Common Sheet Metal Fabrication Techniques and Their CNC Machining Applications
Apr 02,2025
• Understanding CNC Machine Tolerances and Their Impact on Part Accuracy
Mar 17,2025
• Understanding the role of surface finish in CNC machining: how to improve part performance and life?
Mar 13,2025
• The Advantages of Laser Cutting vs. CNC Milling for Sheet Metal Fabrication
Mar 13,2025
• The Importance of Tool Path Optimization in CAM Software
Mar 12,2025