CNC Milling vs. CNC Turning: Which is Better?
5 min
Difference between CNC milling and CNC Turning
CNC milling and CNC turning are two different machining approaches that are used to create various parts and components. In the following section, we shall differentiate them based on operation, workpiece shape, and the axes of movement.
Comparing these two procedures, milling removes material from a stationary workpiece by use of a spinning multi-point cutting tool. Cutting tools move along many axes (often X, Y, and Z) to form complicated forms, grooves, and features on the workpiece. We use stationary cutting tools to remove material from the revolving workpiece during turning. Cutting tools move along two axes (often X and Z) to shape workpieces into cylindrical forms like shafts, pins, and rings.
When comparing workpiece shapes, milling is better suited for creating parts with complex geometries, including irregular shapes, contours, and cavities. Because it can process the external and internal features of the workpiece. However, turning is mainly used to produce cylindrical parts. It excels at creating symmetrical circular shapes such as axes, cylinders, and disks.
When comparing the axes of movement of these two machines, milling machines typically have three or more axes of motion, which allow the cutting tool to move along the X, Y, and Z axes. These axes enable the creation of complex three-dimensional shapes. In contrast, turning machines usually have two axes of movement, typically the X and Z axes. The cutting tool moves along these axes to shape the rotating workpiece.
CNC Milling
CNC milling, also known as computer numerical control milling, is a machining method that removes material from a workpiece using computerized controls and spinning multi-point cutting tools. It is a very adaptive and precise method that is employed in a range of industries, such as manufacturing, aerospace, automotive, and engineering.
A computer program is used in CNC milling to control the movement of the milling machine and cutting tools. The program defines the tool routes and the cutting parameters, including speed, feed rate, and depth of cut. Following these directions, the milling machine accurately removes material from the workpiece.
Milling entails rotating the cutting tool, which is often a cylindrical device with numerous cutting edges. As the tool spins, it contacts with the workpiece, cutting and removing material to achieve the desired form. The cutting tool may move along many axes, including the X, Y, and Z axes, enabling sophisticated and accurate machining processes.
Face milling, peripheral milling, slot milling, drilling, and contouring are among the operations that CNC milling machines may do. They can produce complicated forms, patterns, and features with great precision and repeatability. Depending on the cutting tools employed, the milling machine may work with a variety of materials, including metals, polymers, composites, and wood.
Advantages & Applications
CNC milling has various advantages over manual milling, including the potential to boost production, improve precision, decrease human mistakes, and automate and repeat complicated machining operations. We frequently utilized it in manufacturing processes to generate high-dimensional accuracy and surface quality components, prototypes, molds, and parts.
CNC Turning
CNC turning, also known as computer numerical control turning, is a machining process that uses computer control and rotation of a workpiece to remove material and create cylindrical parts. It is a typical method used in the manufacturing industry to produce precision components such as shafts, pins, fittings, and other cylindrical objects.
In CNC turning, we use a computer program to control the movement of the cutting tool and the rotation of the workpiece. This program can specify tool paths, cutting parameters, and desired dimensions of the finished part. The workpiece is then shaped according to these instructions by using a lathe.
The turning process then involves clamping the workpiece in a chuck or collet and holding it securely in place. The workpiece rotates at high speed while a single-point cutting tool (usually made of carbide or high-speed steel) is fed into the rotating workpiece to remove material. The cutting tool can move along multiple axes, including the X and Z axes, enabling different cutting operations such as facing, grooving, threading, and contouring.
Computer numerical control (CNC) controls the cutting tools, which allows precise control of tool motion and cutting parameters. Specifically, the CNC system interprets program instructions and adjusts tool position, feed rate, and cutting speed accordingly. As a result, this automation enables consistent and precise machining of workpieces.
Advantages & Applications
CNC turning offers several advantages over traditional manual turning. It speeds up production, improves precision, and enables the production of complex geometries. Besides this, CNC lathes can process a variety of materials, including metals, plastics, and composites. Therefore the entire process is very efficient and can be easily programmed to produce multiple identical parts.
WHY work with JLC3DP
A reliable source is essential whether you're searching for CNC turning, milling, or any other type of precise engineering services. The components you require must be of the highest standard and constructed to last.
As a subsidiary of JLCPCB, we provide an industry-leading online 3D printing & CNC machining service by utilizing cutting-edge manufacturing technology to create affordable functional parts out of many different industrial-grade materials that can be used in the automotive, medical, and consumer electronics fields, among others.
We offer high-quality 3D printing processes, including selective laser sintering, fused deposition modeling, stereolithography, Selective Laser Melting, and HP Multi Jet Fusion.
We have hundreds of CNC machines, experienced engineers, support CNC milling (3-axis, 4-axis, 5-axis), turning (digital turning, turning, and milling complex), and surface treatment processing technology. This technology allows us to efficiently produce both prototyping and production parts, ensuring consistent and high-quality results.
Popular Articles
• Cutting with Precision: A Comprehensive Guide to CNC Water Jet Technology
• CNC Coolant Explained: Types, Maintenance & Safety
• Rake Angle in Machining: Machinists’ Guide to Perfect Cuts
• What Steps Are Taken To Minimize Waste In CNC Machining Processes?
• How EDM Wire Cutting Works: Complete Guide to Precision CNC Wire Cutting
Keep Learning
CNC Machining vs 3D Printing: Complementary Technologies for Prototyping
Introduction: Multiple Options for Rapid Prototyping In today’s fast-paced product development environment, rapid prototyping is a critical part of the design cycle. Engineers and designers need to validate their ideas quickly, test functionality, and optimize designs before moving to full-scale production. Two of the most widely used technologies are CNC machining and 3D printing. Each technology has unique advantages, limitations, and optimal use cases. By understanding their differences, companies ......
What Are The Advantages of CNC Machining Over Manual Machining?
Introduction In modern manufacturing, choosing between CNC (Computer Numerical Control) machining and manual machining is one of the most important decisions for engineers and fabricators. The choice directly affects cost, efficiency, product quality, and design flexibility. CNC machining uses computer-driven controls to automate the cutting and shaping of parts, while manual machining relies on the skill and experience of operators to perform similar tasks. Understanding the advantages, limitations, ......
What Is CNC Technology? Understanding Computer Numerical Control Systems
CNC technology plays a strategic role in modern manufacturing ecosystems by enabling scalable, automated, and data-driven production across multiple industries. Rather than focusing on individual machines, CNC technology connects digital design, machining processes, and quality systems into an integrated manufacturing workflow. This allows manufacturers to achieve higher throughput, tighter tolerances, and more predictable production outcomes across the entire product lifecycle. By integrating digital......
CNC Meaning: Definition and What It Stands For
What Is CNC? Realistic factory photo of a CNC milling machine cutting aluminum with coolant spray, technician in the background. CNC Definition and Acronym Explained CNC, short for Computer Numerical Control, refers to a manufacturing method in which machine tools are controlled by pre-programmed computer instructions rather than manual operation. These instructions define tool movement, speed, feed rate, and machining sequence, allowing machines to perform cutting, drilling, milling, and shaping task......
Aluminum CNC Machining: Process, Tools, and CNC Milling Aluminum Explained
(A block of aluminum getting CNC milled) What Is Aluminum CNC Machining? Aluminum is exceptionally suited for CNC machining due to its combination of light weight, strength, and machinability. It's lightweight, which is a huge bonus, yet it stays strong. It's soft enough that you can machine it extremely fast, but it's tough enough to handle real-world abuse. This balance makes aluminum a preferred material for CNC applications in aerospace, robotics, automotive, and consumer electronics. Here's why a......
What Is CNC Routing? A Complete Guide to Routing Machines and the CNC Routing Process
(Istock) (A CNC router cutting into wood) What Is CNC Routing? When people ask what is CNC routing, they're usually trying to figure out one thing: how machines can carve clean shapes out of wood, plastic, and soft metals without human hands guiding the cut every second. CNC routing is essentially a computer-driven cutting system. It uses a tool that spins fast, really fast, to remove material following a pre-programmed path. The machine handles the motion autonomously, without human intervention, fol......